
Learned Cost Model for Placement on
Reconfigurable Dataflow Hardware

1st Etash Guha
SambaNova Systems

Palo Alto, USA
etash.guha@sambanova.ai

2nd Tianxiao Jiang
SambaNova Systems

Austin, USA
tianxiao.jiang@sambanova.ai

3rd Andrew Deng
SambaNova Systems

Palo Alto, USA
andrew.deng@sambanova.ai

4th Muthu Annamalai
SambaNova Systems

Palo Alto, USA
muthu.annamalai@sambanova.ai

5th Jian Zhang
SambaNova Systems

Palo Alto, USA
jian.zhang@sambanova.ai

Abstract—Mapping a dataflow-graph of an ML model onto a
reconfigurable system is difficult, as different mappings have dif-
ferent throughputs and consume resource constraints differently.
To solve this, a model to evaluate the throughput of mappings
is necessary as measuring throughput completely is expensive.
Many use a hand-designed analytical model, relying on proxy
features or intuition, introducing error. We provide a Learned
Approach that predicts throughput 31%-52% more accurately
over a variety of graphs. In addition, our approach shows no
accuracy degradation after removing performance annotations.
We show that using this approach results in 5.6% faster compiled
graphs.

Index Terms—Data-driven, cost model, dataflow architecture

I. INTRODUCTION

For modern deep neural network (DNN) models [4], [12],
efficient model training requires both high compute capacity
and high memory bandwidth from hardware. To reach high
hardware efficiency in model training, reconfigurable dataflow
architectures are being increasingly adopted for building next-
generation training accelerators [3], [11]. In these dataflow
architectures, a large array of reconfigurable function units,
including both compute and memory units, are interconnected
on-chip as shown in Figure 1a. With an intelligent compiler,
such architectures can achieve high compute capacity and
memory bandwidth at the same time by leveraging the in-
terconnected on-chip functional units.

To enable DNN training on dataflow architecture, compilers
first extract a directed acyclic graph (DAG) from DNN with
common arithmetic operations such as matrix multiplication
as nodes. These nodes are then placed onto the functional
units and routed through on-chip interconnections; this process
is known as placement and routing (PnR). To determine
the optimal PnR decision that maximizes the throughput of
the compiled DNN, compilers optimize a cost model which
ranks the fitness of different PnR decisions. For this process,
a precise cost model for PnR is critical to the success of
compilers for dataflow architectures.

It is a common choice to construct cost models for PnR of
dataflow architectures based on heuristics involving placement

density and routing congestion [2]. These heuristics model
functional unit operation and interconnect transmit speed to
estimate hardware throughput during operation. However, es-
tablishing functional heuristics that cover each arithmetic oper-
ation presented in DNNs can be iterative and time consuming.
Heuristics also lack precision in modeling complex empirical
behaviors of the functional units and on-chip interconnects;
this could lead to over-pessimistic or over-optimistic cost mod-
eling. Finally, heuristic rules are often not adaptive enough to
suit continuous development due to substantial adhoc tweaking
needed to accommodate changes in the compiler.

In this paper, we challenge the common belief in the
necessity of heuristics in cost modeling for placement and
routing in dataflow architectures. We ask, can we learn a
cost model purely from empirical measurements using machine
learning techniques, and achieve superior modeling precision,
less engineering time cost and stronger adaptivity compared
to heuristic-based cost models on real DNN workload?

Concretely, we present a data-driven cost model based on
graph neural networks (GNN) [14] for the dataflow architec-
ture. In GNN, nodes and edges are represented by real-valued
embedding vectors to encode local informations. By iteratively
aggregating the local information associated with the nodes
and edges across the graph neighborhoods, GNN can capture
the holistic characteristics of the entire graph structure. We
leverage the GNN to extract the PnR graph representation and
use a regressor to learn the measured throughput. In this way,
the cost model can gain throughput prediction capabilities and
also generalize to different unseen graphs by learning across
broad set of PnR decisions.

We design the data-driven cost model to resolve three pain
points from heuristic-based cost modeling:

• High engineering time cost on complex heuristic deriva-
tion. Our GNN-based cost model does not require com-
plex heuristics, for example, the latency of the functional
unit on performing specific arithmetic operations and the
detailed communication latency between the units.



• Poor accuracy in predicting the real performance. Our
cost model learns directly from empirical measurements.
Additionally, it is able to capture subtleties in hardware
behaviors which are hard to encode by rigid rules.

• Ad-hoc tweaking in heuristics under continuous com-
piler developement. For our cost model, adaptivity in
the continuous development can be achieved quickly
by recollecting empirical throughputs and retraining the
GNN regressor within hours.

Empirically, we first show that our data-driven cost model
can more precisely rank the throughput of PnR decisions
than heuristic baselines. We then swap in our cost model
into the fast-evolving compiler for an industry-leading training
accelerator [1]. Using this compiler, we demonstrate that the
artifacts compiled with our data-driven cost model consistently
deliver higher throughput at different timepoints, showing
adaptivity to the continuous changes in the compiler stack.
More specifically, on a randomly generated heldout set of
PnR decisions, we show that the throughput predictions from
our cost model can achieve up to 20% higher Spearman rank
correlation coefficient on the empirical throughput than the
heuristic-based baselines across all datasets. To validate the
quality of our cost models in compiling large real DNNs
workload, we integrate our cost model into a production-level
compiler. We demonstrate that the PnR decisions optimized on
our data-driven cost model achieve up to 5% higher training
throughput than the decisions driven by the default heuristic-
based cost model across transformer based DNNs such as
Bert-large and GPT2 models [4], [12]. By repeating the data
collection and model training at two time points where there
is a major compiler update, we show that both Bert and GPT
compiled with our data-driven cost model consistently has
higher throughput compared to the baselines.

Our contributions are summarized as follows.
• We propose a purely data-driven cost model without

heuristic rules for the PnR process on dataflow archi-
tectures. This cost model can be learned within hours
instead of months for the conventional heuristic-based
cost model.

• We show that our trained cost model can reduce the
prediction error by almost half testing on a number of
building blocks of modern DNNs.

• We empirically evaluate our pretrained cost model by
using it to guide PnR to compile Bert on a dataflow
architecture and demonstrate better throughput compared
to the heuristic-based cost model.

• We demonstrate that our cost model is adaptive to the
evolution of compilers by yielding higher throughput
consistently on Bert and GPT at two different time points
when the compiler is upgraded.

II. PRELIMINARY

To establish the technical background, we first present the
preliminaries on PnR in compilers for reconfigurable dataflow
architecture in Section II-A. We then discuss limitations of

heuristic-based cost modeling in PnR with examples motivat-
ing our study on data-driven approaches in Section II-B. In
order to expose concepts for the backbone in our data-driven
cost model in Section III, we additionally discuss graph neural
networks in Section II-C.

A. Placement and Routing for Dataflow Architectures

As shown in Figure 1a, hardware using the dataflow ar-
chitecture usually holds a large number of on-chip functional
units including compute units and memory units. Data can be
efficiently transmitted in between the units via fast intercon-
nect. This architectural design can deliver both high compute
capacity and high memory bandwidth. This makes dataflow
architecture a natural fit to breakthrough the efficiency of
training DNNs [11], [13].

a) Placement and Routing for Pipeline Execution: To
compile a DNN for the dataflow architecture, compilers map
the arithmetic operations in the DNN to the reconfigurable
functional units; this process is usually termed as placement
and routing (PnR). In this process as shown in Figure 1b, com-
pilers abstract the DNN into a dataflow graph and place all the
arithmetic operations onto the reconfigurable functional units.1

After placing the operations, the compiler determines routes to
communicate the data across the units. This spatial mapping
keeps data flowing on chip and enables high utilization of
the hardware. In more detail, modern DNNs are trained using
iterative algorithms where a batch of training data samples get
processed at each iteration. Using the spatial mapping, data
samples in a batch flow through the operations in pipeline
fashion. For example in Figure 1b, the linear and ReLU
can be two different pipeline stages and they can process
different samples at the same time. At steady state, the pipeline
execution keeps all functional units utilized concurrently.

b) Cost modeling: To determine an optimal PnR decision
on the dataflow graph, compilers need to search a large
solution space. This is similar to the NP-hard physical cell
placement problem in VLSI design [8]. To achieve a practical
solution, dataflow architecture compilers use a heuristic based
cost model which measures the fitness of PnR decisions to
guide the solution space search. This cost model can be used
by a placer algorithm, for example simulated annealing [8],
to iteratively optimize the PnR solution. The precision of this
cost model is critical to compiling DNNs with high training
throughput.

B. Limitations of Heuristic-based Cost Models

Generally, it is hard to derive a rule-based analytical cost
model that captures all the subtleties in a PnR decision on a
large array of functional units with complex communication
patterns. Heuristic rules are used to approximate the com-
putational latency of functional units on each operation and
the data transmit latency between the units. These heuristic

1When the dataflow graph is too large to hold on the functional unit
array, compilers first partition the full graph into subgraphs and then perform
placement and routing for each individual subgraph.



(a) (b) (c)

Fig. 1: (a) Dataflow architecture: hardware using dataflow architectures consists of a large array of functional units as the
data path. Each type of these units can deliver one functionality such as switch, arithmetic compute and memory. Across
these units, data are routed using on-chip interconnect. (b) Placement and routing (PnR): To train a DNN on the dataflow
architecture, a compiler spatially places a set of arithmetic operations in the DNN simultaneously to the array of units and route
the data with on-chip interconnect. Data samples for DNN training are processed in a pipeline fashion where each pipeline
stage consists of one or more operations. (c) Cost model based on graph neural networks (GNNs): The PnR decisions induce
a graph representation with the units as nodes and interconnect as the edges. To construct a cost model on this representation,
we use a regressor based on GNNs to aggregate information through graph neighborhoods and predict the fitness of PnR
decisions.

rules typically model the local behavior of units for a stan-
dalone operation without considering the interactions between
them; these heuristics simplify the modeling. However they
can significantly hold back industrial compiler engineering
in three important aspects. Firstly, writing the heuristic-rules
with acceptable precision to cover the diverse set of op-
erations involved in training DNNs is an incredibly time-
consuming effort. Secondly, the imprecision of heuristics can
preclude PnR decisions which are empirically performant but
discouraged under simplified heuristics. For example, two
operations may share the shortest path for communication on
the fabric and each could require the full bandwidth. Even
though in the dataflow graph context they could time-share
the routes at runtime, some conservative heuristics could seek
to prevent route congestion and encourage a longer route for
one of the operations. Lastly industrial compilers are evolving
daily in engineering practice. When substantial changes go
into the compiler stack such as upgrades to the low-level
implementation of an operation, the heuristic rules requires
adhoc tweaks to accommodate changes. This lack of adaptivity
challenge the efficiency in cost model maintenance.

C. Graph Neural Networks

To break the limitation of heuristic-based cost models, we
propose a data-driven cost model using machine learning
techniques. Towards this end, it is critical to choose an
appropriate machine learning model architecture to encode
PnR decisions. We note that PnR decisions directly cast to a
graphical representation, with functional units and interconnect
as the nodes and edges respectively. Therefore it is natural to
use graph neural networks (GNNs) which are the de facto
machine learning tool to model graph-structured data [14].
In Algorithm 1, we present the process to generate the graph-

level global representation for input graphs. More formally, let
G = (V,E) be a graph where V is the set of nodes and E is
the set of edges. For any node v ∈ V and any edge e ∈ E,
there is a real-value embedding vector xv ∈ Rm and xe ∈ Rm

respectively to encode the information of v and e.

Using the embedding vectors, an already learned GNN
generates graph-level representations in two steps. Firstly,
GNN uses a K layer neural network to generate node and edge
representation by fusing information across neighborhoods. In
this first step, we define NV→V : V → 2V ,NV→E : V → 2E

as neighborhood functions defining the set of neighboring node
and edges for v ∈ V . Similarly given edge e ∈ E, let NE→V :
E → 2V ,NE→E : E → 2E define the neighoring nodes and
edges for e. To generate the intermediate node representation
hk
v at the Kth layer of the information fusion network, the

fusion network first uses the aggregation function AGGR to
generate the neighboring node representation hk

NV →E(v) and
neighboring edge representation hk

NV →V (v). The Kth layer
concatenates the intermediate node representation hk−1

v from
the last layer, the neighboring node and edge representations
with the CAT function. The intermediate node representation
is then derived by passing the concatenated vector through a
linear projection defined by weight matrix WK

V ∈ R3m×m and
a pooling function, like MAX. After processing through the K
layers, the final node representations are generated as hK

v . In
the second step, the GNN uses a pooling function like AVG to
aggregate over all the final node representations hK

v . Finally,
this pooling function produces the graph-level representation
hG ∈ Rm.



Algorithm 1 Generating graph-level representations

1: Embeddings XV = {xv, ∀v ∈ V }, xE = {xe, ∀e ∈ E}
2: Weight matrices WV =

{
Wk

V , ∀k ∈ {1, 2, ...,K}
}

3: Weight matrices WE =
{
Wk

E ,∀k ∈ {1, 2, ...,K}
}

4: procedure GRAPHREPRESENTATION(G, XV , XE , WV , WE)
5: h0

v ← xv,∀v ∈ V , h0
e ← xe,∀e ∈ E

6: for k = 1, 2, ...,K do
7: for v ∈ V do ▷ Get node representations
8: hk

NV →E(v) ← AGGR(
{
hk−1
d ,∀d ∈ NV →E(v)

}
)

9: hk
NV →V (v) ← AGGR(

{
hk−1
u , ∀u ∈ NV →V (v)

}
)

10: skv ← MAX(WE ∗ CAT
(
hk
NV →E(v),hNV →V

)
)

11: hk
v ← Wk

V · CAT(hk−1
v , skv)

)
12: end for
13: end for
14: return hG ← AVG({hK

v , ∀v ∈ V })
15: end procedure

III. DATA-DRIVEN COST MODELING FOR PNR

As discussed in Section II-B, the limitations of conven-
tional PnR cost modeling can hold back the quality of
compiler engineering. These limitations intrinsically originate
from hand-crafted heuristics in the cost models. To alleviate
these issues, we propose a data-driven cost model without
heuristics for PnR in compilers for dataflow architectures.
Specifically in Section III-A we extract graph representations
of the PnR decisions using graph neural networks, the natural
machine learning tool for graph-structure data as discussed
in Section II-C. Built on the graph representation of PnR
decisions, we introduce a regression model to predict and rank
the hardware throughput of unseen PnR decisions for unseen
dataflow graphs in Section III-B. This GNN-based through-
put regressor is trained purely on the empirical throughput
of dataflow graphs compiled with randomly generated PnR
decisions; thus, it could alleviate limitations from heuristics.

A. Graph Representations for PnR Decisions

The PnR decisions for dataflow architectures naturally in-
duces a graph G = (V,E). In such graphs, V is the set
of nodes containing actively used functional units and E
is the set of edges representing the used fabric routes. To
leverage GNNs to extract the graph-level representation for
PnR decisions, we first construct the node and edge embedding
vectors encoding hardware characteristics of the units and
fabrics. For a functional unit v ∈ V , we define the node
embedding vectors as xv =

[
xv,F ,xO(v),xS(v)

]
. In this

definition xv,F ∈ Rmf is a fixed one-hot vector encoding
the functional unit type of v. To additionally incorporate the
information on which type of operations is mapped to v,
we use a learnable embedding vector xO(v) ∈ Rmo where
O(·) : V → N} returns the type index of the operation mapped
to a unit. The last component in the node embedding vector
is another learnable vector xS(v) ∈ Rms where S(·) : V → N
return the pipeline stage index of a functional units. Intuitively
xS(v) can partially suggest the order of operations and hint
on how many samples can be processed simultaneously by
the pipeline, which is relevant information to objectives such
as throughput prediction. Finally to encode characteristics of

the fabrics, we define the edge embedding as a fixed vector
xe ∈ Rme ; in this vector, we store features such as the fabric
route length associated with e ∈ E which can suggest how
fast data communicates along e.

Next, we use the K layer information fusion network
in Algorithm 1 to aggregate the information from xv and
xe through graph neighborhoods. This aggregation process
generates the final node and edge representation hK

v and hK
v .

Taking in all these hK
v and hK

v vectors, the POOL function
finally produces a graph-level representation hG ∈ RmG .
Using this graph-level representation, we can learn a regressor
to predict and rank the hardware throughput attained by the
DNNs compiled with different PnR decisions.

B. Throughput Regressor on Graph Representations

To enable our cost model to predict throughput resulting
from PnR decisions, we consider learning a regression model
over the graph-level representation hG. The regression net-
work is a simple 3-layer multi-layer perceptron using ReLU
as the nonlinear activation function. In order to prepare the
data for learning the regressor, we collect a large set of ran-
domly generated PnR decisions G = {Gg,∀g ∈ {1, 2, ..., N}}
from different dataflow graphs. We then measure the training
throughput of the artifacts compiled with these randomly
generated PnR decisions. We collect the measurements as
Y = {yg,∀g ∈ {1, 2, ..., N}} where yg ∈ R is the conse-
quent throughput of PnR decision Gg . Using the throughput
measurements, we learn the regressor together with the fusion
network and embeddings in an end-to-end fashion. The Adam
optimizer is used to perform parameter updates [5].

This throughput regressor can be combined with any cost-
model-based algorithms to perform placement and routing.
Our throughput regressor is light-weight and could be used
as a drop-in replacement in production-level compilers to
accelerate real DNN training workloads.

IV. EXPERIMENTS

To validate that our data-driven cost modeling can resolve
the pain points in heuristic-based cost modeling, we empir-
ically evaluate the throughput regressor in Section III as a
cost model for placement and routing in compiling DNNs
to the dataflow architecture. In this section, we demonstrate
that when compared to heuristic-based cost modeling, our
data-driven approach can eliminate the time cost of manually
crafting analytical models using the heuristic, achieve better
precision and demonstrate stronger adaptivity to compiler
stack changes to maintain throughput advantages in compiling
large DNNs. Specifically, we briefly present the experiment
setup in Section IV-A and discuss the experiment results in
details in Section IV-B.

A. Experiment setup

a) Dataset generation: In order to generate the dataset to
learn our data-driven cost model, we collect PnR decisions on
compiling DNN building blocks, including Generalized Ma-
trix Multiplication (GEMM), Multilayer Perceptrons (MLP),



Multiheaded Attention (MHA) and Feed Forward Network
(FFN) with various width and depth; these are building blocks
that cover a comprehensive list of operations in modern
DNNs. To generate a diverse dataset, we randomized the
search parameters of a simulated annealing placer. Regarding
the throughput measurement, we observe that the absolute
throughput on different dataflow graphs can vary significantly
in magnitudes which leads to unstable learning.2 To learn
stably, we normalize the absolute throughput into the range
[0, 1] with the theoretical performance upper bound. To derive
this limit, we simply consider the required amount of compute
and the FLOPs for the compute units in each pipeline stage.
We then use the limit on the theoretically slowest stage to
normalize the absolute throughput measurement; this deriva-
tion does not involve any complex heuristics which are time-
consuming to craft. In other words, we collect data with
the goal of letting our cost model learn to encourage PnR
decisions that reach simple theoretical limits. In this dataset
generation process, we collect 5878 pairs of PnR decisions and
normalized throughputs in total and train a single throughput
regressor model on the collected dataset.

b) Heuristic baselines: We use the heuristic-based cost
model derived from the expert knowledge on the dataflow
architecture as the baseline. In this cost model, each individual
operator types has its own rule-based system to capture how
fast this operator generate outputs in isolation. A graph-
level heuristic predict normalized throughput and estimates
routing congestion from these speed metrics. It takes a large
engineering team to develop and refine these heuristics. To
measure the quality of different cost models, we use the
relative error (RE) to quantify how well a cost model predict
normalized throughputs. We additionally use the Spearman
rank correlation to evaluate on the capability to rank PnR
decisions regarding how close they are to the theoretical limits.
To report statistically meaningful metrics, we use 5-fold cross
validation across our experiments.

B. Results

Using the above experiment setup, we compare our data-
driven cost model to the heuristic baseline on three aspects
which are critical to the compiler engineering practice.

a) Time to construct the cost model: While the baseline
requires significant engineering efforts over a long time span,
our data-driven cost model takes approximately one day to
construct without intensive human intervention. Specifically,
the dataset generation process only takes less than one day
in an industrial-level cpu compute farm. Upon collecting
the dataset, learning the throughput regressor only requires
approximately 2 machine hours with one GeForce RTX 2080Ti
GPU. This validates that our data-driven cost model can
eliminate the significant engineering time cost in constructing
heuristic-based cost models.

2The absolute throughput is measured by counting machine cycles.

Fig. 2: GNN shows to be significant more accurate than
heuristic baselines in terms of Rank Correlation and RE.

TABLE I: Our GNN beats the baseline significantly in both
Relative Error and Spearman Rank correlation in predicting
the throughput on a PnR decision

Test RE Test Rank

Baseline 0.406 0.468
GNN 0.193 0.808

b) Modeling precision: Regarding the precision of cost
models, we demonstrate that our data-driven cost model can
more precisely predict normalized throughput and rank PnR
decisions in terms of normalized throughput. We then empir-
ically show that these advantages can translate to hardware
throughput advantages over heuristic baselines in compiling
large DNN models. Concretely when comparing predicted
normalized throughput to the groundtruth, lesser relative error
indicates better prediction precision and higher Spearman rank
correlation suggests stronger ranking capability. As shown
in Figure 2, across all individual groups of DNN building
blocks, our data-driven cost model demonstrate up to 58%
higher Spearman rank correlation than the baseline. Similarly
when combining the datasets, we observe 21% improvement
in relative error and 34% improment in Spearman rank cor-
relation. Our ultimate goal is to swap the data-driven cost
model into the placer and compile high-throughput unseen
DNNs. To demonstrate this, we compile several MLP and
MHA physical graphs using both cost models in the anneal-
ing based algorithm for graph compilation on the dataflow
architecture. We observe that compilations generated with the
learned cost model resulted in a 9.1% and 8.6% decrease
in latency when compared to compilations generated with a
heuristic cost model. For larger and more practical graphs,
we compile Bert-large [4] and GPT2XL [12] using the both
cost models in the same compiler stack. We observe that the
Bert-large and GPT2XL compiled with our data-driven cost
model can demonstrate 5.7% and 1.3% higher throughput
respectively. This demonstrates the practical use of using the
data-driven cost model to generate compilations of logical
graphs to increase throughput over several significant model
architectures.

c) Adaptivity to compiler changes: Industrial compiler
stacks can evolve continuously in timeframes spanning sev-
eral years. Thus ease of maintenance is also critical to de-



signing a cost model. Even with substantial compiler stack
changes/upgrades, we show that we can easily adapt our data-
driven cost model and maintain the throughput advantages
over heuristic baseline. In more detail, we recollect the dataset
of PnR decisions and normalized throughputs and retrain the
throughput regressor at the beginning and end of a time span of
3 weeks, a timespan where 100’s of pull requests have affected
the software stack. We can observe in Table II that at the
two version of the compiler stack, our data-driven cost model
can consistently deliver > 5% and 1% throughput advantages
over baselines on Bert-large and GPTXL respectively. We have
demonstrated that on large and practical logical graphs such
as BERT and GPT, our model can generate more accurate
predictions of throughput and generate PnR decisions with
higher throughput than a heuristic based cost model despite the
large changes in the software behind the Dataflow architecture.
This shows the adaptivity of our model to maintain value over
time without the need for large engineering effort to tune the
algorithm.

TABLE II: Consistent throughput (∆TP) and Relative Error
improvements on large models by GNN cost model at different
timepoints

BERT GPT

Past Present Past Present

RE 0.353 0.324 0.478 0.422
∆TP 5.6% 5.7% 1.1% 1.2%

C. Ablation Study

In our data-driven cost model, the node and edge embedding
vectors provide foundational information for the GNN to learn
a graph-level representation. We perform an ablation study to
study the relative importance of node and edge embedding
vectors. As evident by Table III, removing the node and edge
embeddings causes significant decreases in both accuracy and
Spearman rank coefficient over several datasets. This indicates
that these features are critical to the success of the data-driven
cost model.

TABLE III: The decrease in RE and Rank Coefficient demon-
strate how the Edge and Node embeddings hold valuable
information for the GNN.

RE Rank

MLP FFN MHA MLP FFN MHA

GNN 0.148 0.404 0.139 0.778 0.563 0.794
− edge emb 0.343 0.576 0.297 0.291 0.116 0.337
− node emb. 0.205 0.413 0.249 0.428 0.293 0.477

V. RELATED WORK

To our knowledge, this is the first study of a data-driven
GNN cost model guiding a placement algorithm for a reconfig-
urable dataflow architecture. Leveraging ML techniques, like
GNN, in the cost model design for placement and routing
is an active research area under physical VLSI chip design
domains [6], [7], [9] but none have extended to the compiler

design on reconfigurable dataflow architecture. They also rely
on heuristics in the cost model design which causes the
aforementioned accuracy problem. In a representative work
[6], the authors proposed a similar idea of using embeddings
to encode the circuit graph at the transistor level, to predict
performance for chip placement. However, there are still three
major differences compared to our work. Their graphs were
much smaller than ours. The performance labels are obtained
through simulations rather than real measurements as in our
work. Only the placement is modeled in their work, while
we additionally model the routing. In [9], the idea of using a
GNN to predict the return in the value network of a RL placer
is similar to a cost model. However, instead of training on
real measurements, they use a performance estimation proxy
for the final reward to reduce the overhead in environment
interaction. Another popular PnR algorithm is to formulate
the hardware constraints into an Integer Linear Program (ILP)
[10]. However, the cost model has to be simple and linear to
be used in ILP but PnR on dataflow architecture has many
complex hardware constraints.

VI. CONCLUSION

In this paper, we challenge the conventional wisdom of
using heuristic cost model to guide PnR compilation on
reconfigurable dataflow architecture. We show that by taking
easily accessible hardware features, our data-driven GNN-
based cost model can avoid the complex heuristic design
phase of traditional cost model and save months of engi-
neering time. We show that our cost model can give better
throughput predictions on different DNN building blocks. In
addition, our cost model pretrained on these building block
can be directly used to compile larger, unseen models such as
Bert/GPT and attains up to 5% throughput improvement. We
also demonstrate that our cost model is adaptive to changes
in the compiler by consistently beating the heuristic baseline
in terms of throughput.

REFERENCES

[1] Accelerated Computing with a Reconfigurable Dataflow Architec-
ture. https://sambanova.ai/wp-content/uploads/2021/06/SambaNova
RDA Whitepaper English.pdf.

[2] Vaughn Betz and Jonathan Rose. VPR: A New Packing, Placement
and Routing Tool for FPGA Research. In Proceedings of the 7th
International Workshop on Field-Programmable Logic and Applications,
FPL ’97, pages 213–222, 1997.

[3] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2017.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. CoRR, abs/1810.0, 2018.

[5] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[6] Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma,
Wenbin Xu, Sachin S Sapatnekar, Ramesh Harjani, and Jiang Hu.
A Customized Graph Neural Network Model for Guiding Analog IC
Placement. In 2020 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9, 2020.

https://sambanova.ai/wp-content/uploads/2021/06/SambaNova_RDA_Whitepaper_English.pdf
https://sambanova.ai/wp-content/uploads/2021/06/SambaNova_RDA_Whitepaper_English.pdf


[7] Mingjie Liu, Keren Zhu, Jiaqi Gu, Linxiao Shen, Xiyuan Tang, Nan
Sun, and David Z Pan. Towards Decrypting the Art of Analog Layout:
Placement Quality Prediction via Transfer Learning. In 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 496–
501, 2020.

[8] Theodore W Manikas and James T Cain. Genetic Algorithms vs.
Simulated Annealing: A Comparison of Approaches for Solving the
Circuit Partitioning Problem. 1996.

[9] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar
Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William
Hang, Emre Tuncer, Quoc V Le, James Laudon, Richard Ho, Roger
Carpenter, and Jeff Dean. A graph placement methodology for fast chip
design. Nature, 594(7862):207–212, 2021.

[10] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan
Sankaralingam, Cristian Estan, and Behnam Robatmili. A General
Constraint-Centric Scheduling Framework for Spatial Architectures.
SIGPLAN Not., 48(6):495–506, jun 2013.

[11] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A reconfigurable architecture for parallel patterns.
In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), pages 389–402, 2017.

[12] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language Models are Unsupervised Multitask Learners.
2019.

[13] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Re, Christopher
Aberger, and Christopher De Sa. PipeMare: Asynchronous Pipeline
Parallel DNN Training. In A Smola, A Dimakis, and I Stoica, editors,
Proceedings of Machine Learning and Systems, volume 3, pages 269–
296, 2021.

[14] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and
Maosong Sun. Graph Neural Networks: A Review of Methods and
Applications. CoRR, abs/1812.0, 2018.


	Introduction
	Preliminary
	Placement and Routing for Dataflow Architectures
	Limitations of Heuristic-based Cost Models
	Graph Neural Networks

	Data-driven Cost Modeling for PnR
	Graph Representations for PnR Decisions
	Throughput Regressor on Graph Representations

	Experiments
	Experiment setup
	Results
	Ablation Study

	Related Work
	Conclusion
	References

