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Abstract
The paradigm of inverse reinforcement learning (IRL) is used to specify the reward function of an

agent purely from its actions and is critical for value alignment and AI safety. Motivated by the need
for IRL in large action spaces with limited data, we consider as a first step the problem of learning
from a single sequence of actions (i.e., a demonstration) of a stochastic linear bandit algorithm.
In general, IRL is made difficult by the lack of access to the rewards seen by the demonstrators.
When the demonstrator employs the Phased Elimination algorithm, we develop a simple inverse
learning procedure that uses the demonstrator’s evolving behavior. We establish guarantees on the
performance of our estimator, showing that the linear reward function can be estimated consistently
in the time horizon with just a single demonstration. In particular, we guarantee that our inverse
learner approximates the true reward parameter within a T

1−ω
2ω error, where T is the number of

samples generated by the demonstrator and ω is an action set dependent constant. We complement
this result with an information-theoretic lower bound for any inverse learning procedure. Our
guarantees are corroborated using simulations on synthetic data and a demonstration constructed
from the MovieLens dataset.
Keywords: Inverse Reinforcement Learning, Stochastic Linear Bandits, Phased Elimination

1. Introduction

Using data-driven learning algorithms to design agents that interact with their environment has
achieved great success in various fields ranging from robotics and video game playing to language
models. For these learned algorithms, reward specification is important for building safe machine-
learning systems that align with the goals of the human designer (Amodei et al., 2016). However,
alignment with designers’ goals using hand-specified rewards is difficult and often mispecified
(Anderson, 2001; MacGlashan and Littman, 2015). Inverse Reinforcement Learning(IRL) (Abbeel
and Ng, 2004; Ho and Ermon, 2016; Gershman, 2016; Fu et al., 2017; Jacq et al., 2019; Geng et al.,
2020) is a well-established paradigm that circumvents the need for explicit reward specification and
instead infers a reward function from demonstrations. In IRL, an inverse learner only observes the
actions of a learned agent and then estimates the environment’s reward function. The traditional IRL
paradigm assumes that a demonstration consists of a roll-out of the optimal policy (Ng et al., 2000;
Abbeel and Ng, 2004) or randomized variants (Ziebart et al., 2008; Ramachandran and Amir, 2007).
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This paradigm has several limitations, including an often poor sample complexity, i.e. requiring
multiple demonstrations. More crucially, even under simple scenarios (tabular RL/bandits), relying
purely on demonstrations of an optimal policy can lead to a fundamental identifability issue; that is,
more than one reward function explaining the demonstrator’s actions. Such identifiability issues have
been known since the early literature on IRL (Ng et al., 2000; Abbeel and Ng, 2004) and persist even
with infinite demonstrations.

The inverse bandit paradigm, introduced by Guo et al. (2021), resolves both reward identifiability
and sample complexity issues, albeit in the much simpler setting of stochastic multi-armed bandits
(MAB). They show that it is possible to accurately estimate the reward structure by observing
a single online demonstration of a low-regret bandit algorithm. In particular, they observe the
demonstrator’s behavior (i.e., the arms it picks) en route to optimality and critically utilize the
temporal information in online bandit learning to circumvent identifiability issues and the requirement
of multiple demonstrations.

The question that motivates this paper is whether learning from a single demonstration in a
similar manner is possible for more complex decision-making scenarios. In particular, we are
interested in estimating the reward structure in the stochastic linear bandit setting by observing a
single demonstration from a low-regret algorithm. This setting in itself is much more challenging
— the ideas from Guo et al. (2021) critically utilize the independence of reward distributions in the
MAB setting in multiple steps of the algorithm design and analysis and do not generalize to even the
linear bandit case, which has highly structured rewards across actions.

In this paper, we show that it is indeed possible to estimate the linear reward parameter consis-
tently in the time horizon from a single demonstration of the phased elimination algorithm (Lattimore
and Szepesvári, 2020)1. To do so, we construct a simple inverse learning algorithm that uses an
entirely different idea from the one in Guo et al. (2021). Our algorithm selectively picks a small set of
actions from the last epoch of the phased elimination demonstrator and forms a least squares estimate
of the reward parameter. The actions are carefully selected to guarantee consistent estimation in
the time horizon. Concretely, given an assumption on the density and “smoothness" of the action
set (c.f. Assumption 4.1), we verify that our inverse learner with a single demonstration estimates

reward within an error of T−
(

ω−1
2ω

)
where T is the length of the demonstration, and ω ∈ [1,∞) is a

constant dependent on the “smoothness" of the action set). We also provide examples of action sets
for which these assumptions are reasonable. In addition to the theory, we demonstrate the accuracy
of our inverse learner on synthetic as well as semi-synthetic data.

Contributions Our main contributions are listed in more detail below.

• We develop a simple inverse estimator of the reward parameter for a stochastic linear bandit
instance (θ∗ ∈ Rd) from a single demonstration of the phased elimination algorithm (Lattimore
and Szepesvári, 2020). Our estimator performs a least-squares estimate using d arms from the
last phase of elimination and an estimate of the suboptimality gap of arms eliminated in the
last phase. In Theorem 2, we prove an upper bound in the estimation error on the order of
T

1−ω
2ω where T is the time horizon of the forward algorithm and ω is a “smoothness" constant

on the action set ranging from ω ∈ [1,∞) (c.f. Assumption 4.1).

1. Note that this is a natural generalization of successive-arm-elimination (Even-Dar et al., 2006) to linear bandits.
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• In Theorem 3, we prove an information-theoretic lower bound on the optimal inverse estimator

estimation error of
√

d
T , showing that as the action set gets “smoother" around the optimal

arm, i.e. ω →∞, our inverse estimator becomes close to information-theoretically optimal.

• We empirically evaluate our inverse learning algorithm on synthetic and semi-synthetic data.
We first validate the low estimation error of our algorithm over the commonly used action sets
consisting of the ℓ1, ℓ2, and ℓ5 ball. We also consider an application involving linear bandit
algorithms for a recommender system on the MovieLens data (Zhu and Kveton, 2022). In
particular, we model the problem of predicting the user’s “preference vector" as an inverse
linear stochastic bandit problem. We demonstrate that our inverse algorithm can efficiently
predict the reward parameter of a user by observing the movies chosen by the recommender
system. This could have downstream relevance in predicting the user’s preference for movies
not seen by the recommender system.

Outline of paper We first provide a brief discussion of the most closely related work in Section 2,
and then provide basic background for the stochastic linear bandits problem and phased elimination
in Section 3. Section 4 discusses the methodology and proof outline of our main results, Section 5
states the information-theoretic lower bound, and we present our experiments in Section 6. We
conclude with a discussion and future work in Section 7.

2. Related work

We organize our related work along two verticals: low-regret algorithms for stochastic linear bandits
interchangeably referred to as a forward algorithm, and inverse algorithms for reinforcement learning.

2.1. Stochastic Linear Bandits

The setting of stochastic linear bandits was first analyzed by Abe and Long (1999); since then, several
algorithms have been proposed that achieve a regret bound of O(d

√
T ) for infinite action sets, and

Õ(
√
dT ) for finite action sets, e.g. (Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori et al., 2011;

Valko et al., 2014). In both cases, these upper bounds are matched by information-theoretic lower
bounds (Lattimore and Szepesvári, 2020). In this paper, we assume that the demonstrator is the
Phased Elimination algorithm in Lattimore and Szepesvári (2020); Valko et al. (2014); Esfandiari
et al. (2019), which also achieves the optimal O(

√
dT ) regret bound for stochastic linear bandits

with a finite action set. This algorithm is spiritually related to the successive-arm-elimination (SAE)
algorithm (Even-Dar et al., 2006), which admitted a straightforward analysis for the inverse learning
problem in the MAB setting (Guo et al., 2021). However, the phased-elimination algorithm has key
differences, including the non-uniform sampling scheme among active arms in each epoch and a
doubling in epoch length in each increment. The doubling of epochs, which is not the case for SAE,
turns out to be particularly challenging to deal with in inverse estimation but, at the same time, is
essential to proving sublinear regret in structured bandit settings.

2.2. Inverse Reinforcement Learning

The original works on IRL (Ng et al., 2000; Abbeel and Ng, 2004) noted an identifiability issue in
the reward function from an optimal demonstration that cannot be resolved except in special cases
involving additional structure on the reward or additional side information (Gershman, 2016; Amin
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et al., 2017; Fu et al., 2017; Geng et al., 2020). Assuming randomized variants of the optimal policy
(e.g. max-entropy IRL (Ziebart et al., 2008), Bayesian IRL (Ramachandran and Amir, 2007)) can
partially alleviate this identifiability issue, but only in special cases. Aside from the aforementioned
inverse bandit paradigm (Guo et al., 2021), the works of Gao et al. (2018) and Jacq et al. (2019) also
introduced a paradigm of “learning from learners" but used optimization instead of bandit learning for
the demonstration and still require several demonstrations. More recently, Hüyük et al. (2022) studied
the general problem of IRL for evolving demonstrators by treating the forward algorithm’s reward
parameter as a Gaussian posterior and using approximate Bayesian inference to infer the learned
reward function. In particular, they model the evolution of the forward algorithm as a Gaussian
process but do not utilize any particular structure of the reward function. It is worth noting that there
are distinct objectives for learning from demonstrations that can be far easier than IRL; for example,
imitation learning (Ho and Ermon, 2016) or apprenticeship learning (Abbeel and Ng, 2004). These
tasks usually do not suffer from the same identifiability issues as IRL.

3. Problem Formulation

We now discuss the basic setup for the inverse linear bandit problem. In Section 3.1, we discuss
preliminaries for the stochastic linear bandit problem, and in Section 3.2, we describe the forward
algorithm that we assume the demonstrator will use, i.e. the phased-elimination algorithm (Lattimore
and Szepesvári, 2020; Valko et al., 2014). We then formalize the inverse linear bandit problem and
our desired estimation error guarantee in Section 3.3.

3.1. Preliminaries on stochastic bandits

Our environment is defined as a structured, parameterized bandit instanceM = (θ∗,A), where θ∗

parameterizes the reward function of the environment and A is a finite set of actions the forward
algorithm may take while interacting with the environment. A forward algorithm sequentially
interacts with this environment over T rounds. At round t, the algorithm chooses an action from the
action set2, at ∈ A and receives a reward given by

xt := Gθ∗(at) + ηt,

where Gθ∗(a) is the mean reward function parameterized by θ∗ and ηt denotes noise, which we
assume to be zero-mean and 1-sub-Gaussian. The forward algorithm repeats this procedure for T
steps. The main property that we desire from the forward algorithm is to minimize pseudo-regret,
defined as

RT =

T∑
t=1

max
a∈A

Gθ∗(a)−Gθ∗(at).

As is standard in the bandit literature (Lattimore and Szepesvári, 2020), we desire in particular that
RT = õ(T ), i.e. sublinear regret in the total number of rounds T . We consider the special case of the
stochastic linear bandit for this work. Here, A ⊂ Rd and θ∗ ∈ Rd, and the mean reward function is
defined as Gθ∗(a) = ⟨a, θ∗⟩.

2. Note that the algorithm has access to the prior history Ft−1 := {a1, x1, a2, x2, . . . , at−1, xt−1} and can use this
history as input to decide an action at at round t.
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3.2. The forward algorithm: phased elimination

Inspired by the relative simplicity of the inverse error analysis of the successive-arm-elimination
algorithm (Even-Dar et al., 2006) for stochastic multi-armed bandits presented in Guo et al. (2021),
we will assume that the forward algorithm uses its natural counterpart for the linear bandit problem,
which is commonly called phased elimination (Lattimore and Szepesvári, 2020; Valko et al., 2014).
While not as popular in practice as LinUCB (Abbasi-Yadkori et al., 2011) and linear Thompson
sampling (Agrawal and Goyal, 2013), the phased elimination satisfies a similar (optimal) sublinear
regret guarantee, given by RT = Õ(

√
dT log |A|). It has found particular use in bandit instances on

smooth functions on a graph (Valko et al., 2014).
To keep the paper self-contained, we briefly recap the salient properties of the phased elimi-

nation algorithm, which we also formally define in Algorithm 1. At a high level, the algorithm
operates in phases that increase in length and eliminates a subset of arms at the end of each phase.
Consider a phase ℓ ≥ 1 and denote the set of active arms at the beginning of phase ℓ by Aℓ.
The algorithm first picks a G-optimal design {π(a)}a∈Aℓ

, whose definition is reproduced below.

Algorithm 1: Phased Elimination
Input :δ (probability parameters), T (number of samples),

{ν1, . . . , νL} (error parameters)
Result: a1, . . . , aT

1 ℓ← 0
2 A1 ← A
3 while Number of actions ≤ T do
4 εℓ ← 2−ℓ

5 πℓ ← G-Optimal design of Aℓ with δ and νℓ
6 Nℓ ← 0
7 Play each action a ∈ Aℓ each nℓ(a) =⌈

2dπℓ(a)
ν2ℓ

log
(
kℓ(ℓ+1)

δ

)⌉
times

8 Vℓ ←
∑

a∈Aℓ
nℓ(a)aa

T

9 θℓ ← V −1
ℓ

∑tℓ+Tℓ
t=tℓ

atxt
10 Aℓ+1 ← {a ∈ Aℓ s.t. max

b∈Aℓ

(⟨θl, b− a⟩) ≤ 2εl}
11 ℓ← ℓ+ 1

12 end

Definition 1 [G-optimal design (Lat-
timore and Szepesvári, 2020)] A
G-optimal design for an action set
A is a function π : A → R that
maximizes f(π) = log(det(V (π)))
such that

∑
a∈A π(a) = 1 where

V (π) =
∑

a∈A nℓ(a)aa
T where

nℓ(a) =
⌈
2dπℓ(a)

ν2ℓ
log
(
kℓ(ℓ+1)

δ

)⌉
.

It then plays each arm a ∈
A exactly

⌈
2dπℓ(a)

ν2ℓ
log
(
kℓ(ℓ+1)

δ

)⌉
times, where δ denotes the allowed
probability of failure and νℓ is a er-
ror parameter. At the end of phase
ℓ, the algorithm uses the observed
rewards in phase ℓ alone to con-
struct an ordinary-least-squares es-
timate of the reward parameter, de-
noted by θℓ, and eliminates all suf-
ficiently suboptimal arms (in a sim-
ilar sense to SAE, but with confidence widths given by the structure of the linear model, de-
tailed in Lemma C.1). As long as νℓ ≤ ϵℓ, this algorithm is known to achieve the regret bound

RT = O
(√

dT log
(
|A| log(T ))

δ

))
, which is optimal for finite action sets.

3.3. The inverse linear bandit problem

We now define the inverse linear bandits problem. The inverse learner is assumed to have access
to the sequence of actions (a1, . . . , aT ) and the action sets at each phase (A1, . . . ,AL) from a
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single demonstration of the phased elimination algorithm defined in Section 3.2. As in Guo et al.
(2021), we also assume access to the best reward µ∗ = max

a∈A
⟨a, θ∗⟩ as well as the optimal arm

a∗ = argmax
a∈A

⟨a, θ∗⟩ to avoid degenerative identifiability issues. Our goal is to construct an estimate

θ̂ with small relative error to the true reward parameter θ∗, defined as
∥θ̂−θ∗∥

2
∥θ∗∥2

. We also make the
following assumptions on the forward algorithm.

Assumption 3.1

1. The total number of phases executed by our forward algorithm is upper bounded by L ≤ L̄
where L̄ is a natural number.

2. The error parameter at each phase νℓ = ιϵℓ is chosen such that 0 < ι < 1.

4. Methodology and main result

In this section, we describe the methodology for our inverse learning approach. We first define some
notation specific to this section. We will define the two-dimensional subspace spanned by two vectors
u and v as span(u, v). Moreover, we will define the conditioning of a set as the condition number of
the matrix formed where each row of the matrix is an element of the set. That is, for a set of vectors
C = {c1, c2, . . . , cn}, we define

cond(C) = cond




c1
c2
...
cn


 .

The goal of the inverse learner is to learn the environment’s true reward parameter θ∗. As
mentioned in the introduction, a core challenge in the linear bandit setting is the shared structure
across arms — pulling an arm a will change the forward algorithm’s estimates of all arms a′ ̸= a,
rendering an out-of-the-box approach from Guo et al. (2021) infeasible. At the same time, this
shared structure could help estimate θ∗ if one could reliably estimate the rewards of a large and
“well-behaved" subset of actions. To be more concrete, suppose that we had an oracle where for any
arm a in Ae ⊂ A, we knew its exact mean reward Gθ∗(a). In this case, the optimal estimator of θ∗

would minimize the least-squared error between the rewards and the arms, i.e.

θ̂ = argmin
∑
a∈Ae

(
Rθ∗(a)− ⟨a, θ̂⟩

)2
. (1)

At a high level, our inverse learner (Algorithm 2) proceeds in three steps: a) constructing a specific
action subset Ae (Steps 4-6 of Algorithm 2), b) estimating the reward Gθ∗(a) for each a ∈ Ad (Step
8 of Algorithm 2), and c) computing the LS estimate of θ∗ from these reward samples as observations
(also Step 8 of Algorithm 2). Note that the demonstrator chooses δ and ι, which are inputs to the
algorithm. Equation (1) suggests that, with near-perfect access to mean rewards, one might want
to select the subset Ae to be as large as possible. However, this is misleading reasoning for several
reasons: first, different arms are pulled an unequal number of times due to elimination, meaning that
the mean rewards of certain arms can be estimated more reliably than others; second, selecting arms
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Algorithm 2: Inverse Estimator
Data: (A1, . . . ,AL)
Result: θ̂

1 Ae = {}
2 β := (3(1− ι)ϵℓ)

1
ω

3 for i ∈ [d] do
4 if ∃a ∈ A s.t. τ(a, i) ≥ β,dist(a, i) ≤ γ, 2(1− ι)ϵℓ ≤ ⟨θ∗, a∗ − a⟩ ≤ 4(1− ι)ϵℓ then
5 Ae ← Ae ∪ {a}
6 end
7 end

8 θ̂ = argmin
∑

a∈Ae

(
µ∗ − 2(1 + ι)ϵℓ − ⟨a, θ̂⟩

)2
9 return θ̂

that are too close to each other (i.e., arms a, a′ for which ∥a− a′∥2 is too small) would result in the
estimation error blowing up due to poor conditioning.

The crux of our methodology lies in cleverly designing the action subsetAe to adequately control
the estimation error that arises due to finite samples of each arm as well as the condition number of
the design matrix in Equation (1). We now describe each of the steps in Algorithm 2 in more detail
and finally present our main result on the estimation error of θ∗.

4.1. Construction of action subset Ae

We now describe the first part of the algorithm (Steps 4-6 in Algorithm 2), which constructs the
action subset Ae. First, we select arms only from the last eliminated set, i.e. Ae ⊂ (AL \ AL−1),
to ensure that the mean reward of each arm in Ad can be estimated with error as low as possible.
Second, we select arms with as large as possible pairwise angles between each other in order to
appropriately control the condition number of the design matrix in Equation (1). We will pick d arms
in d evenly spaced planes to ensure the latter property. In particular, we will select the i-th arm to be
in the subspace spanned by the optimal arm a∗ and the i-th vertex of a d− 1-regular simplex.

Formally, consider any d− 1-regular simplex Si in Rd formed by the unit vectors {s1, . . . , sd}
such that si ̸= αa∗ for any i ∈ [d], α ̸= 0. To form the ith arm in Ae, we will iterate through
each arm a in the action set A and calculate two relevant metrics. The first is the distance
between an arm a and its projection in the subspace span(a∗, si). Formally, let proj(a, i) de-
note the projection operation from an arm in A to the two dimensional subspace span(a∗, si),
i.e. proj(a, i) := argmin

a′∈span(a∗,si)
∥a− a′∥2. Then, the first metric is the distance between an arm a and

the plane span(a∗, si), i.e., dist(a, i) := ∥proj(a, i)− a∥2. The second metric we will calculate is
the angle formed between the projection proj(a, i) and the optimal arm a∗, which we will denote as
τ(a, i) := cos−1

(
⟨proj(a,i),a∗⟩

∥ proj(a,i)∥2∥a∗∥2

)
. Thus, our goal is to find a subset of d arms Ae = {a1, . . . , ad}

such that for the i-th arm ai, a) dist(ai, i) is small, b) τ(ai, i) is large, and c) ai ∈ AL \AL−1, i.e. ai

was eliminated in phase L.
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It is worth noting that this specific subset of arms, Ae, may not exist for an arbitrary action set A
if the action set is not sufficiently dense or is very “sharp" around the optimal arm. Below, we state
our assumptions on the action set to rule out these possibilities.

Assumption 4.1 We assume that there exists a value L̄ such that for all i ∈ [d], for all ℓ ∈ [L̄], and
some ω > 1, there exists an arm ai with the properties:

1. τ(ai, i) ≥ β where β := (3(1− ι)ϵℓ)
1
ω

2. dist(ai, i) ≤ γ ≤ 2ϵL̄
∥θ∗∥2 .

3. µ∗ − 4(1− ι)ϵℓ ≤ ⟨θ∗, a∗ − ai⟩ ≤ µ∗ − 2(1− ι)ϵℓ

A few comments on this assumption are in order. Part 1 of the assumption ensures that the angle
between proj(ai, i) and the optimal arm a∗ is sufficiently large; Part 2 ensures that ai is close to
its projection onto the plane given by span(a∗, i); and Part 3 ensures that the arm ai is sufficiently
suboptimal to be eliminated in phase L with high probability, but also sufficiently high in reward
to stay active until phase L with high probability (Lemma 4.1, stated below). It is easy to find
arms satisfying Part 2 as long as the action set is sufficiently “dense" (in the sense of satisfying a
γ-covering of some continuous set in Rd), and it is easy to find arms satisfying Parts 1 and 3 as long
as the action set is sufficiently “smooth" around a∗, meaning that arms with a reward bounded away
from the optimal reward and with a sufficiently large angular distance from a∗ can be found.

Lemma 4.1 Any arm a satisfying

2(1− ι)ϵℓ < ⟨a∗ − a, θ∗⟩ ≤ 4(1− ι)ϵℓ

will be inAℓ\Aℓ−1 with probability at least 1−|A|Lδ. Therefore, with probability at least 1−|A|Lδ,
the mean reward of any arm a ∈ AL \ AL−1 is bounded as

µ∗ − 4(1 + ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗.

This statement is proved in Appendix C. As long as Ae can be selected in this way, its condition
number is upper bounded according to Lemma 4.2, stated below.

Lemma 4.2 (Condition Number of Ae) Let χ2 and χ1 be defined as χ2 = max
a∈A
∥a∥2, χ1 =

min
a∈A
∥a∥2. Suppose that Assumption 4.1 holds, and we can select the action subset Ae according to

Steps 4-6 of Algorithm 2. Then, with probability at least 1 − |A|Lδ, the condition number of the
matrix whose rows are elements of Ae satisfies

cond(Ae) ≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2β

1
ω

]
− γ
√
d

.

This statement is proved in Appendix D. Armed with these lemmas, we now provide upper
bounds on the estimation error of the rewards for each arm in Ae, which we will subsequently use to
bound the estimation error of the reward parameter θ∗.
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a∗

Si

O

proj(a, i)

a
span(a∗, si)⊥

τ

Figure 1: A visualization of the formation of an arm in Ae. Here, we project an arm a onto
the subspace span(a∗, si) such that τ(a, i), the angle between the projection and a∗, is large and
dist(a, i) is small.

4.2. Estimating the rewards of actions in Ae

We next estimate the mean reward for the arms from Ae, i.e. Gθ∗(a) := ⟨a, θ∗⟩ for all a ∈ Ae. Since
each arm belongs to AL \ AL−1, it will have a mean reward less than the optimal reward µ∗ and
greater than µ∗−4(1+ι)ϵℓ from Lemma 4.1. Consequently, the simple estimate r̂ := µ∗−2(1+ι)ϵℓ
satisfies the following upper bound on the estimation error.

Lemma 4.3 Let r denote the vector of true rewards
{
Rθ∗(a

i)
}d
i=1

and r̂ denote a vector of our

estimated rewards given by {µ∗ − 2(1 + ι)ϵℓ}di=1. Then, we have∥r−r̂∥2
∥r∥2 ≤

4ϵL
µ∗−8ϵL

= O
(
2−L

)
with

probability at least 1− |A|Lδ.

4.3. Main result: estimation error guarantee on θ∗

This statement is proved in Appendix D. The final step (Step 8 of Algorithm 2) constructs θ̂ as the LS
estimate (Equation (1) using the action set Ae := {a1, . . . , ad} as covariates and estimated rewards
{r̂}di=1 as responses. We now present our main result, which is the error guarantee of the estimator
from Algorithm 2.

Theorem 2 Let χ1, χ2 be defined as χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2, and J = log

(
|A|L(L+1)

δ

)
.

Then, we have ∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
= O

(
χ1d

2ω−1
2ω J

ω−1
ω

χ2T
ω−1
2ω

)

with probability at least 1− |A|Lδ. Note that ω > 1 is the constant from Assumption 4.1.

This statement is proved in Appendix D. Since we have assumed ω > 1, Theorem 2 implies
consistent estimation of θ∗ as T → ∞. Moreover, as the smoothness parameter ω → ∞, the
dependence on d becomes linear, and the dependence on T becomes T−1/2; the latter is optimal in
its dependence on T as shown in Theorem 3.
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4.4. Discussion on Viability of Assumptions

A natural question is whether the assumptions taken on the action set are reasonable and whether
the value of ω can be characterized for arbitrary action sets. The lemma below is a proof-of-concept
that there exist valid action sets that satisfy our assumptions from Assumption 4.1 for any value
ω ∈ [1,∞). This statement is proved in Appendix F.

Lemma 4.4 Let G = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL for notational ease. Given any value ω ∈ [1,∞),
we can construct a bandit instance that satisfies Assumption 4.1. Specifically, Assumption 4.1 is
satisfied by two-dimensional bandit instances that are rotationally isomorphic to the bandit instance
where

1. θ∗ forms an angle κ with the vector (1, 0) where

κ ∈
[
max

(
− cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0) + β − π

)
,

min

(
cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0)− β

)]
.

2. ∀(x, y) ∈ A s.t. (x, y) ̸= (1, 0), cos(κ+ tan-1(y, x))∥θ∗∥2
√

x2 + y2 < cos(κ)∥θ∗∥2.

3. The two points
(

G cos(β)
cos(κ+β)∥θ∗∥2 ,

G sin(β)
cos(k+β)∥θ∗∥2

)
,
(

G cos(−β)
cos(κ−β)∥θ∗∥2 ,

G sin(−β)
cos(k−β)∥θ∗∥2

)
∈ A.

We have defined two instancesM1 = (θ∗1,A1) andM2 = (θ∗2,A2) as rotationally isomorphic if
there exists a rotation operationR such thatR(θ∗1) = θ∗2 andR is a bijective function from A1 to
A2.

5. Information-Theoretic Lower Bound

We now provide an information-theoretic lower bound on the accuracy achievable by any inverse
estimator via the classical Le Cam binary testing approach (LeCam, 1973). Essentially, this approach
creates two different bandit instances M1 = (θ∗1,A1) and M2 = (θ∗2,A2) and has the forward
algorithm work with one of these bandit instances. Then, we show that the inverse algorithm will be
unable to distinguish which of the bandit instances the forward algorithm interacted with given a
single demonstration of any forward algorithm that incurs regret at least Õ(

√
dT ) and sufficiently

explores each direction. Since the fundamental limit on regret for stochastic linear bandits for finite
action sets is known to be Õ(

√
dT ) (Lattimore and Szepesvári, 2020), this implies a fundamental

limit on inverse estimation on the order of
√

d
T , as stated below. Theorem 3 is proved in Appendix E.

Theorem 3 For a bandit instanceM characterized by reward parameter θ∗1 and action set A,
there exists a bandit instanceM′ with parameter θ∗2 and the same action set A such that any inverse
estimator incurs error

max{∥θ̂ − θ∗2∥2, ∥θ̂ − θ∗1∥2} = Ω̃

(√
d

T

)
.
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Figure 2: The inverse estimator’s performance (averaged over 100 trials) over the ℓ1, ℓ2, and ℓ5 balls
across dimensions d = 6, 7, 8. The shaded region represents the standard deviation corresponding
to each phase. Each graph is a log-log scale with orange, blue, and green dotted lines denoting a
log-log linear fit for each dimension.

6. Experiments

To validate our results empirically, we implement our inverse estimator on both simulated and semi-
synthetic environments, measuring the error in the estimate of θ∗. Throughout the experiments, the
forward algorithm is Algorithm 3, and the noise in the observed reward is sampled from a Gaussian
N (0, 0.2) distribution.

6.1. Simulations

To construct our action sets, we sample 4000 vectors from the surface of the unit ℓ1, ℓ2, and ℓ5 balls
and use this finite set as A. This is done by independently sampling each entry from a generalized

Gaussian distribution
(

having density proportional to e−|x|β
)

with a β parameter of 1, 2, and 5

respectively, and then normalizing the resulting vector by its respective ℓp norm (Barthe et al., 2005).
To run Phased Elimination and our estimator on these action sets most naturally, we choose to fix
the number of phases instead of the number of rounds; see Appendix G for a formal description.
Using this implementation, we run 100 bandit instances with maximum phase values from 3 to 6
and dimensions ranging from 3 to 8. Afterward, we run the inverse estimator on each instance and
measure the metric of relative error of θ̂, defined as ∥θ̂−θ∗∥2

∥θ∗∥2 .

On the one hand, given the T−(ω−1
2ω ) term from Theorem 2, we expect relative error to decay

with time. From the log-log plots in Figure 2, we observe that this trend holds for each action set by
examining the trend of each best-fit line. The lines in a Figure 2(a), Figure 2(b), and Figure 2(c) each
contain slopes in the range [−0.487,−0.413], indicating decay in T . The varying slopes between
each plot may result from ω varying with the choice of action set. On the other hand, the d

2ω−1
2ω

term in Theorem 2 predicts that relative error should increase in d. In Figure 3, we plot the relative
error of our inverse estimator on each unit ball for each dimension from 3 to 8, verifying that higher
dimensional action sets indeed incur higher relative error. Furthermore, from the results in Table 1,

11
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ℓ1 BALL ℓ2 BALL ℓ5 BALL

d INVERSE FORWARD INVERSE FORWARD INVERSE FORWARD

3 0.247 0.053 0.011 0.002 0.054 0.083
4 0.352 0.097 0.071 0.002 0.172 0.124
5 0.464 0.230 0.108 0.004 0.247 0.178
6 0.499 0.401 0.138 0.122 0.338 0.249
7 0.551 0.586 0.247 0.391 0.324 0.451
8 0.587 1.392 0.281 1.136 0.379 0.722

Table 1: Inverse and Forward algorithms relative error on each action set. Our method achieves good
accuracy over many action sets.

we observe that at dimensions of 6 or higher, the inverse algorithm performs comparably to the
forward algorithm, occasionally incurring less relative error.

6.2. Semi-synthetic Experiments
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Figure 3: Error vs. d on each action set where shad-
ing denotes standard deviation. This corroborates
our theoretical dependence of error on dimension.

To validate the performance of our estimator
with more realistic data, we simulate the task of
recommending movies to users on the Movie-
Lens 25M dataset Lam and Herlocker (2006);
Harper and Konstan (2015), as set up by Zhu and
Kveton (2022). The MovieLens 25M dataset
contains over 160,000 users, 60,000 movies, and
25 million ratings. To create an action set and θ∗,
we randomly generate sample u = 6, 000 users,
m = 4, 000 movies, and their corresponding
ratings. We then perform a matrix factoriza-
tion on R ∈ Ru×m, the matrix of ratings for
each user and movie, using Alternating Least
Squares. This yields matrices U and M where
UM⊤ = R, U ∈ Ru×d, and M ∈ Rm×d.
Therefore, each row in M is a d dimensional embedding corresponding to a movie, while each row
in U corresponds to the reward parameter for a given user. We then simulate a user’s choices and
ratings by randomly sampling a reward parameter θ∗ = Ui, and then running Algorithm 1 with M as
the set of arms for 6 phases. Afterward, we estimate the user’s reward parameter via Algorithm 2.
We repeat this for ten randomly selected users and average the relative error of θ̂. We repeat this for
four different values of d. Our numerical results can be found in Table 2. The results in table Table 2
contain the same trend of increased error with higher dimensional action sets.

7. Discussion

We have presented an inverse reinforcement learning algorithm for the setting of linear stochastic
bandits and guarantees its convergence behavior as a function of the length T of the demonstration.

12
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We empirically verified the efficacy of our algorithm in both simulation and semi-synthetic settings.
Moreover, we showed a lower bound on the best achievable error by any inverse learner. An
interesting future direction would be extending a similar framework to nonlinear reward functions
and general bandit settings.

MOVIELENS RELATIVE ERROR

d INVERSE ERROR FORWARD ERROR

2 0.2859 0.0037
4 0.3666 0.0356
6 0.3641 0.1401
8 0.5030 0.4632

Table 2: Relative error of the inverse estimator on
MovieLens 25M.

A fundamental limitation, even in the linear
bandit settings, is that we limit our demonstra-
tor to being the canonical Phased Elimination
algorithm. In contrast, we could have studied
other popular linear bandit algorithms. More-
over, we place assumptions on the density and
geometry of the action set for our analysis, and
weakening these assumptions is an important
future direction.
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Appendix A. Notation table

Symbol Meaning

d Dimension of environment
T Time horizon
L Number of phases
θ∗ True Reward Function Parameter
θ Demonstrator’s Reward Function Parameter
θ̂ Inverse Estimator’s Estimated Reward Parameter
γ Closeness parameter of action set
at Action taken by demonstrator at time t
xt Reward seen by demonstrator at time t
ηt Noise in reward function seen at time t
µ∗ Reward of optimal arm
a∗ Optimal action with the highest reward
Aℓ Set of remaining arms at phase ℓ
Aℓ \ Aℓ−1 Set of eliminated arms before phase ℓ
ϵℓ 2−ℓ used as criteria for elimination
νℓ Error parameter for G-Optimal Design
δ Probability Parameter for G-Optimal Design

Appendix B. Technical Lemmas

B.1. Proof of Lemma B.1

Lemma B.1 Given two arms a, b that are γ-close, i.e. ∥a− b∥2 ≤ γ, the difference in their rewards
is bounded by

⟨a, θ∗⟩ − ⟨b, θ∗⟩ ≤ γ∥θ∗∥2.

Proof Simply,

⟨a, θ∗⟩ − ⟨b, θ∗⟩ = ⟨a− b, θ∗⟩
≤ ∥a− b∥2∥θ∗∥2
≤ γ∥θ∗∥2

Appendix C. Phased Elimination Proofs

We first prove that the estimate of the reward parameter for the forward algorithm is an accurate
estimate of θ∗. The central intuition behind this is that the G-Optimal design is chosen to ensure
the forward algorithm explores each dimension in Rd. This exploration helps ensure that the
demonstrator’s estimate of θ accurately predicts the sample mean rewards for any arm in the active
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set, not just ones that point in specific favorable directions. Formally, it ensures that the demonstrator’s
estimate of the reward of any arm in the remaining active set of any phase ℓ is bounded by a νℓ. This
lemma is similar to that of Lemma 6.1 in Esfandiari et al. (2019).

Lemma C.1 (Demonstrator’s Estimation Error) From Esfandiari et al. (2019), given arms
pulled in phase ℓ according to Algorithm 1, with probability at least 1− |A|Lδ, for every a ∈ Aℓ,
we have

|⟨a, θℓ − θ∗⟩| ≤ νℓ.

Here, θℓ estimates the forward algorithm reward parameter after the lth phase.

Proof From Lemma 6.1 of Esfandiari et al. (2019), for any δ, νℓ ≥ 0, we know that we can find a
multiset where after playing the multiset in batched bandits fashion, the least-squares estimate error
for any arm a is |⟨a, θℓ − θ∗⟩| ≤ νℓ with probability 1− δ. Therefore, we know that we can form a
multiset such that for every arm a ∈ A and all phases l,

|⟨a, θℓ − θ∗⟩| ≤ νℓ.

To get a lower bound on the probability that this event occurs, we need to find the probability of
the union of all these events not happening. We can upper bound this by taking the union bound
of all events. For all |A| arms and L phases, we get that the probability of any of these events not
happening is upper bounded by |A|Lδ.

This accuracy of the forward algorithm’s θℓ helps maintain its low regret properties. Given the
accuracy of its reward parameter, it is intuitive that with high probability, the forward algorithm
knows which arms are suboptimal and which are not. This intuition should include that of the
optimal arm A∗, which is not suboptimal by definition. Therefore, with high probability, the forward
algorithm does not eliminate the optimal arm.

Corollary C.1 With probability 1− |A|Lδ, for every phase l, a∗ ∈ Aℓ.

Proof From Lemma C.1, for any suboptimal arm a,

⟨a, θℓ⟩ − ⟨a∗, θℓ⟩ ≤ (⟨a, θ∗⟩+ νℓ)− (⟨a∗, θ∗⟩ − νℓ) ≤ 2ιϵℓ ≤ 2ϵℓ.

The event from Lemma C.1 occurs with probability 1− δ, so this result also happens with probability
1− δ.

Given the event that the optimal arm remains in the active set, we can state with a high probability
that suboptimal arms will be eliminated. This is clear from the elimination criteria; if an arm’s reward
is much worse than the best-estimated reward for any arm in the active set, it will be eliminated.
Given that the optimal arm is still in the active set and the reward estimate is accurate, arms with a
true reward much worse than the optimal arm will most likely also have an estimated reward worse
than the optimal arm. This will lead to the elimination of that arm. We formalize this in Lemma 4.1.

Lemma 4.1 Any arm a satisfying

2(1− ι)ϵℓ < ⟨a∗ − a, θ∗⟩ ≤ 4(1− ι)ϵℓ

will be inAℓ\Aℓ−1 with probability at least 1−|A|Lδ. Therefore, with probability at least 1−|A|Lδ,
the mean reward of any arm a ∈ AL \ AL−1 is bounded as

µ∗ − 4(1 + ι)ϵℓ ≤ ⟨a, θ∗⟩ ≤ µ∗.
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Proof Let bℓ−1 be the arm that maximizes the reward bℓ−1 = argmax
b∈Aℓ−1

⟨b, θℓ−1⟩.

⟨bℓ−1 − a, θℓ1⟩ ≤ ⟨bℓ−1 − a, θ∗⟩+ 2νℓ−1 (2)

≤ ⟨a∗ − a, θ∗⟩+ 2νℓ−1

≤ 4(1− ι)ϵℓ + 2ιϵℓ−1

≤ 2(1− ι)ϵℓ−1 + 2ιϵℓ−1

= 2ϵℓ−1

Here, Equation (2) comes from Lemma C.1 which happens with probability 1− |A|Lδ. Therefore,
arm a will not be deleted in phase ℓ − 1. Moreover, let bℓ be the arm that maximizes the reward
bℓ = argmax

b∈Aℓ

⟨b, θℓ⟩.

⟨bℓ − a, θℓ⟩ = ⟨bℓ, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗, θℓ⟩ − ⟨a, θℓ⟩
≥ ⟨a∗ − a, θ∗⟩ − 2νℓ (3)

= ⟨a∗ − a, θ∗⟩ − 2ιϵℓ

≥ 2(1− ι)ϵℓ − 2ιϵℓ

= 2ϵℓ

Here, Equation (3) comes from Lemma C.1, which again happens with the same probability. There-
fore, arm a will be deleted in phase ℓ with probability 1− |A|Lδ.

By the definition of µ∗,
⟨a, θ∗⟩ ≤ µ∗.

Given arm ai is in Aℓ \ Aℓ−1, it was not eliminated in the previous phase. For notational ease, let
b = argmaxb∈Aℓ−1

⟨b, θℓ−1⟩. Therefore,

2ϵl−1 ≥ ⟨b− a, θℓ−1⟩
= ⟨b, θℓ−1⟩ − ⟨a, θℓ−1⟩
= ⟨b, θℓ−1⟩ − ⟨a, θℓ−1 − θ∗⟩ − ⟨a, θ∗⟩
≥ ⟨b, θℓ−1⟩ − νℓ−1 − ⟨a, θ∗⟩ (4)

≥ ⟨a∗, θℓ−1⟩ − νℓ−1 − ⟨a, θ∗⟩ (5)

= ⟨a∗, θℓ−1 − θ∗⟩+ ⟨a∗, θ∗⟩ − νℓ−1 − ⟨a, θ∗⟩
≥ ⟨a∗, θ∗⟩ − 2νℓ−1 − ⟨a, θ∗⟩ (6)

Here, Equation (4) comes from Lemma C.1, which happens with probability at least 1− |A|Lδ.
Equation (5) comes from the fact that b achieves the maximum reward in Al−1 and a∗ ∈ Al−1 with
the same probability according to Corollary C.1. Also, Equation (6) comes from applying Lemma
C.1 again. Therefore, we have

⟨a, θ∗⟩ ≥ µ∗ − 2ϵℓ−1 − 2νℓ−1

= µ∗ − 4ϵℓ − 4ιϵℓ

= µ∗ − 4(1 + ι)ϵℓ
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Corollary C.2 Given an arm a that is γ-close to arm b that has suboptimality

µ∗ − 4(1− ι)ϵℓ + γ∥θ∗∥22 ≤ ⟨a∗ − b, θ∗⟩ ≤ µ∗ − 2(1− ι)ϵℓ − γ∥θ∗∥22,

arm a will be eliminated before phase ℓ, i.e. a ∈ AL \ AL−1 with probability at least 1− |A|Lδ.

Proof We have that |⟨b− a, θ∗⟩| ≤ γ∥θ∗∥2 according to Lemma B.1. Therefore,

⟨a∗ − b, θ∗⟩ ≤ ⟨a∗ − a, θ∗⟩+ γ∥θ∗∥2
≤ µ∗ − 4(1− ι)ϵℓ

Moreover,

⟨a∗ − b, θ∗⟩ ≥ ⟨a∗ − a, θ∗⟩ − γ∥θ∗∥2
≥ µ∗ − 2(1− ι)ϵℓ

According to Lemma 4.1, which happens with probability at least 1− |A|Lδ, arm a will be deleted.

Moreover, for simplicity, throughout this paper, we will do most of our calculations based on
phase numbers, including L, the last phase number. However, given that the last phase is technically
a random variable based on the G-optimal design, we provide a lower bound on the phase L in terms
of T . Here, we see that L is lower bounded by the logarithm of T up to constants.

Lemma C.2 The number of rounds that Phased Elimination takes and the total number of phases
L exhibit the relationship

log(T ) ≤ log(2ι−2dJ) + 2 log(2L) + log (2) .

Here, J is a constant defined as J :=
(
|A|L(L+1)

δ

)
.

Proof Let Nℓ be the number of arms played in phase ℓ. From Lattimore and Szepesvári (2020), we
have that any

Nℓ −
d(d+ 1)

2
≤ 2d

ν2ℓ
log

( |A|l(l + 1)

δ

)
(7)

≤ 2ι−2d · 22l
( |A|l(l + 1)

δ

)
where the first equality comes from Lattimore and Szepesvári (2020). We will call J :=(

|A|L(L+1)
δ

)
for notational ease.
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log

(
L−1∑
ℓ

Nℓ

)
≤ log

(
L−1∑
ℓ

2ι−2d · 22l · (J) + d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l +
L−1∑
ℓ

d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l +

L−1∑
ℓ

d(d+ 1)

2

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log

( ∑L−1
ℓ

d(d+1)
2

2ι−2d (J)
∑L−1

ℓ 22l)

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log

(
1 +

∑L−1
ℓ

d+1
4

2ι−2d (J)
∑L−1

ℓ 22l)

)

= log

(
2ι−2d (J)

L−1∑
ℓ

22l

)
+ log (2)

= log
(
2ι−2d (J) (4L − 4)

)
+ log (2)

≤ log(2ι−2dJ) + log(4L) + log (2)

≤ log(2ι−2dJ) + 2 log(2L) + log (2)

We have arrived at our final claim.

Appendix D. Inverse Estimator Properties

We restate a lemma connecting the error of our inverse estimate with the condition of matrix A and
the reward estimates b̂.

Lemma D.1 Suppose r and r̂ are vectors of the true rewards and estimated rewards for Ae. The
solution to θ̂ = argmin

∑
ai∈Ae(r̂i − ⟨θ, ai⟩)2) where r̂i is the estimate reward of ai satisfies the

bound the error in estimation of θ via∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.

Lemma 4.3 Let r denote the vector of true rewards
{
Rθ∗(a

i)
}d
i=1

and r̂ denote a vector of our

estimated rewards given by {µ∗ − 2(1 + ι)ϵℓ}di=1. Then, we have∥r−r̂∥2
∥r∥2 ≤

4ϵL
µ∗−8ϵL

= O
(
2−L

)
with

probability at least 1− |A|Lδ.

Proof r is a vector of rewards of arms in AL \ AL−1. Therefore, for an element ra associated with
an arm a ∈ AL \ AL−1, we know a /∈ AL−1 \ AL−2. Via Lemma 4.1, for any element ri in r,

µ∗ − 4(1 + ι)ϵL ≤ ri ≤ µ∗.
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We remind the reader that r̂ is the vector of all µ∗ − 2(1 + ι)ϵL from Algorithm 2. Therefore, the
worst case error is when the true reward is exactly ri = µ∗, µ∗ − 4(1 + ι)ϵL. In this, the error in the
estimation of r is upper bounded by |ri − r̂i| ≤ 2(1 + ι)ϵL. Therefore, the maximum of the ℓ2 norm
of the difference vector is

∥r̂ − r∥2 ≤ 2(1 + ι)ϵL
√
d.

For calculating ∥r∥2, we acknowledge that the smallest ra for any i can be is µ∗ − 4(1 + ι)ϵL. Thus,
ℓ2 norm of the reward of true vectors is lower bounded by ∥r∥2 ≥

√
d(µ∗ − 4(1 + ι)ϵL). We have

our final result with
∥r − r̂∥2
∥r∥2

≤ 2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

.

Since ι ≤ 1 from Assumption 4.1, we have that

2(1 + ι)ϵL
µ∗ − 4(1 + ι)ϵL

≤ 4ϵL
µ∗ − 8ϵL

= O
(
2−L

)
.

Lemma 4.2 (Condition Number of Ae) Let χ2 and χ1 be defined as χ2 = max
a∈A
∥a∥2, χ1 =

min
a∈A
∥a∥2. Suppose that Assumption 4.1 holds, and we can select the action subset Ae accord-

ing to Steps 4-6 of Algorithm 2. Then, with probability at least 1− |A|Lδ, the condition number of
the matrix whose rows are elements of Ae satisfies

cond(Ae) ≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2β

1
ω

]
− γ
√
d

.

Proof
We can now prove the original claim. For the help of this proof, we will denote A as the matrix

version ofAe, i.e. A =


a1

a2

...
ad

 where a1, . . . , ad ∈ Ae. We will break down the proof of the bound

of the condition number into two parts. Decomposing A yields

A = DÃ+N.

Here, D is a diagonal matrix where the value of Di,i is the ℓ2 norm of the ith row of A. Also, Ã is
a matrix where the ith row of A, call it vi, is vi =

proj(ai,i)
∥ proj(ai,i)∥2 . N is a matrix where the ith row is

the vector ai − proj(ai, i). Now, we need to lower bound σmin(A) and upper bound σmax(A). We
begin with lower bounding σmin(Aℓ).

σmin(A) = σmin(DÃ+N)

≥ σmin(DÃ)− σmax(N) (8)
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Here, Equation (8) comes from Loyka (2015). We upper bound the σmax(N) term via the
following

σmax(N) =
√
∥N⊤N∥2 (9)

=
√

max
x s.t. ∥x∥2=1

x⊤N⊤Nx

≤
√

dγ2

= γ
√
d

Here, Equation (9) comes from noticing that the rows of N have ℓ2 norm at most γ. We can now
move on to bounding σmin(DÃ) ≥ σmin(D)σmin(Ã).

By design, D is a diagonal matrix where the ith entry is ℓ2 norm of the ith row. Therefore, the
minimum singular value of D is lower bounded by the shortest arm in the action set, defined as
constant χ1. Therefore, we have

σmin(D) ≥ min
a∈A
∥a∥2 → χ1.

We now have that
σmin(A) ≥ χ1σmin(Ã)− γ

√
d.

We now do the upper bound for the maximum singular value.

σmax(A) = σmax(DÃ+N)

≤ σmax(DÃ) + σmax(N)

≤ σmax(DÃ) + γ
√
d

where the inequality comes from the Courant-Fischer min-max theorem, and the second inequality
comes from the above analysis. Similarly, the maximum singular value of D is upper bounded by
the length of the longest arm in the action set, defined as constant χ2. Therefore, we have

σmax(D) ≤ max
a∈A
∥a∥2 → χ2.

We now have that
σmax(A) ≤ χ2σmax(Ã) + γ

√
d.

We now need only analyze the minimum and maximum singular values of Ã. We remind the reader
that the rows of Ã are defined as proj(ai,i)

∥proj(ai,i)∥2 . First, we list three properties of our Ã matrix. We know

that each row of Ã forms an angle of τ(ai, i) ≥ β with the optimal arm a∗ from Assumption 4.1.
We wish to find the condition number for the matrix Ã. The smallest possible condition number
is achieved when τ(ai, i) is the smallest for each row vi, i.e. τ(ai, i) = β. This is when the
rows are the most colinear, leading to poor conditioning. To analyze the condition number of Ã,
we will first analyze the condition number of B. We define the matrix B = 1√

d
Ã∗. We state

the cond(Ã) = cond(B), so we need only find cond(B). Moreover, we will do this by finding
cond(B∗B). The condition number of this matrix is linked to that of B via√

cond(B∗B) = cond(B).
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We note that [B∗B]ij = 1
d⟨vi, vj⟩ where vi and vj are the ith and jth rows of Ã. Note then that

[B∗B]ii =
1
d . For i ̸= j, then ⟨vi, vj⟩ is the following. We will assume the worst case, where the

angle τ(ai, i) is as small as possible, i.e. τ(ai, i) = β. We wish to first find the angle between our α
vectors. We remind the reader that our α vectors form a d− 1-dimensional simplex centered at the
unit vector u = a∗

∥a∗∥2 . We will first find the radius of this simplex, i.e., ∥u− vi∥2. The vectors u, vi,
and the origin form an isosceles triangle where u and vi are unit-norm by definition. Therefore, by
the Law of Sines

∥u− vi∥2 =
sin(τ(ai, i))

sin
(
π−τ(ai,i)

2

)
= 2 sin

(
τ(ai, i)

2

)
Therefore, we have that the radius of the simplex is 2 sin

(
τ(ai,i)

2

)
, which we will call ρ for now. From

Krasnodębski (1971), the angles formed between u− vi and u− vj is arccos
(
− 1

d−1

)
. Therefore,

we have the distance between vj and vi satisfies

∥vj − vi∥22 = ∥u− vi∥22 + ∥u− vj∥22 − 2∥u− vi∥2∥u− vj∥2 cos
(
arccos

(
− 1

d− 1

))
= 2ρ2

(
1− 2 cos

(
arccos

(
− 1

d− 1

)))
= 2ρ2

2d− 1

d− 1

We also have that the angle we are looking for β, which is the angle between vi and vj , satisfies

∥vj − vi∥22 = 2− 2 cos(β).

Therefore, we have

cos(β) = 1− ρ2d

d− 1

Next, we consider the structure of matrix B∗B. Its diagonal elements are 1
d , and its nondiagonal

elements are 1
d cos(β), leading to an explicit unitary diagonalization. This matrix has singular values:

σ1, . . . , σd−1 =
1

d
− 1

d
cos(β)

σd =
d− 1

d
cos(β) +

1

d
.

We will upper bound the maximum singular value.

σd ≤
d− 1

d
cos(β) +

1

d

≤d− 1

d
+

1

d
=1
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where the first inequality comes from the fact that cos(β) ≤ 1. For lower bounding the minimum
singular value, we have

σ1 =
1

d
− 1

d
cos(β)

≥ ρ2

d− 1

We can lower bound ρ2 on the interval τ(ai, i) ∈ [−π
2 ,

π
2 ] via its Taylor expansion as

ρ2 ≥ τ(ai, i)2

2
.

Therefore, we get that the minimum singular value is lower bounded by

σ1 ≥
τ(ai, i)2

2d

≥ 1

2d
β

2
ω (10)

Here, Equation (10) comes from our assumption Assumption 4.1. Therefore, the maximum singular
value for Ã is upper bounded by 1 and the minimum singular value for Ã is lower bounded by
(2d)−

1
2β

1
ω .

We have proved the condition number of Ã. Now, we can find the total condition number for A.

cond(A) =
σmax(A)

σmin(A)

≤ χ1σmax(Ã) + γ
√
d

χ2σmin(Ã)− γ
√
d

≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2β

1
ω

]
− γ
√
d

Theorem 2 Let χ1, χ2 be defined as χ2 = max
a∈A
∥a∥2, χ1 = min

a∈A
∥a∥2, and J = log

(
|A|L(L+1)

δ

)
.

Then, we have ∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
= O

(
χ1d

2ω−1
2ω J

ω−1
ω

χ2T
ω−1
2ω

)
with probability at least 1− |A|Lδ. Note that ω > 1 is the constant from Assumption 4.1.

Proof We remember that from Lemma D.1, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∗∥2
≤ cond(Ae)

∥r̂ − r∥2
∥r∥2

.
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From Lemma 4.3, we know that

cond(Ae) ≤ χ1 + γ
√
d

χ2

[
(2d)−

1
2 [β]

1
ω

]
− γ
√
d

.

Here, from Assumption 4.1, β = (3(1− ι)ϵL)
1
ω . Moreover, from Lemma 4.3, we have that the error

in r is bounded by
∥r − r̂∥2
∥r∥2

≤ 4ϵL
µ∗ − 8ϵL

.

Combining these in Lemma D.1, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ χ1 + γ

√
d

χ2

[
(2d)−

1
2 [3(1− ι)ϵL]

1
ω

]
− γ
√
d
· 4ϵL
µ∗ − 8ϵL

≤ χ1 + γ
√
d

2
L(ω−1)

ω χ2

[
(2d)−

1
2 [3(1− ι)]

1
ω

]
− 2Lγ

√
d
· 4

µ∗ − 8ϵL

Now, for the last phase number, we wish to express this in terms of T instead of our dependence on
L. We will use the result from Lemma C.2 that

log(T ) ≤ log(2ι−2dJ) + 2 log(2L) + log (2)

Using this, we have [
T

4ι−2dJ

] 1
2

≤ 2L.

Since 1−ω
ω is negative, we have

2
L(1−ω)

ω ≤
[

T

4ι−2dJ

] 1−ω
2ω

.

Using this for our bound, we have that∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
≤ χ1 + γ

√
d

2
L(ω−1)

ω χ2

[
(2d)−

1
2 [3]

1
ω

]
− 2lγ

√
d
· 4

µ∗ − 8ϵL

≤ χ1 + γ
√
d[

T
4ι−2dJ

]ω−1
2ω χ2

[
(2d)−

1
2 [3]

1
ω

]
− 2Lγ

√
d
· 4

µ∗ − 8ϵL

Given γ ≤ 2L

∥θ∥2 from Assumption 4.1, we can remove these small constants yielding∥∥∥θ̂ − θ∗
∥∥∥
2

∥θ∥2
= O

(
χ1d

2ω−1
2ω J

ω−1
2ω

χ2T
ω−1
ω

)
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Appendix E. Proof of Theorem 3

Lemma E.1 Given Assumption 4.1, Banerjee et al. (2022) shows that the maximum eigenvalue λd

of the gram matrix
∑T ata

⊤
t = O(T ) and for all other eigenvalues λi for all i ∈ [d− 1] satisfies

λi = O
(
T
d

)
.

Theorem 3 For a bandit instanceM characterized by reward parameter θ∗1 and action set A, there
exists a bandit instanceM′ with parameter θ∗2 and the same action set A such that any inverse
estimator incurs error

max{∥θ̂ − θ∗2∥2, ∥θ̂ − θ∗1∥2} = Ω̃

(√
d

T

)
.

Proof This proof will follow the proof of Theorem 1 from Guo et al. (2021). We will establish two
bandit instances. The first instanceM is parameterized by the true θ∗1. The second instance isM′

which is parameterized by θ∗2 where θ∗2 := θ∗1 − ϵv where ϵ ∈ R. We will choose v ∈ Rd as a random
vector on the unit ball according to a uniform distribution. Suppose one of instancesM andM′

are chosen and we observe the sequence ET := {a1, a2, . . . , aT }. We denote the reward distribution
for an arm at under bandit instancesM andM′ as V(at) and V ′(at) respectively. Furthermore, we
state that the rewards of these bandit instances are a sample from Normal Distributions with variance
Σ2. Formally, we state that V(at) ∼ N(⟨θ∗1, aT ⟩,Σ2) and V ′(at) ∼ N(⟨θ∗2, aT ⟩,Σ2). We reduce
the reward estimation error to that of binary testing between these two instances, as in the Le-Cam
approach.

Given some series of actions E := {a1, a2, . . . , aT } generated by our demonstrator where E ∈ F
and F is the sigma-algebra of possible events, i.e. FT = σ({a1, a2, . . . , aT }). Our bandit instances
M andM′ have the probability distributions over all possible series of actions P and P′, acting over
FT . Given LeCam (1973), any algorithm choosing between the two bandit instances with a decision
θ̂, it must at least suffer an error

E
v

[
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
]
≥ E

v

[
1

2
∥ϵv∥(1− ∥P′ − P∥TV)

]
≥ E

v

[
1

2
∥ϵv∥

(
1− sup

E∈FT

|P(E)− P′(E)|
)]

(11)

where Equation (11) comes from the definition of the total variation. Here, we rely on the result of
Lemma 19 from Kaufmann et al. (2014) stating that

sup
E∈FT

|P(E)− P′(E)| ≤
T∑
t=1

KL(V(at),V ′(at)).

However, remembering that the reward distributions are normally distributed with well-defined means
and variances, we get

KL(V(at),V ′(at)) =
ϵ2(⟨at, v⟩)2

2Σ2
.
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Here, we introduce the term αt,d = ⟨at, v⟩.

E
v

(
T∑
t=1

(⟨at, v⟩)2
)

= E
v

(
T∑
t=1

v⊤ata
⊤
t v

)

= E
v

(
v⊤

(
T∑
t=1

ata
⊤
t

)
v

)

= E
v

(
d∑
i

α2
i e

⊤
i

(
T∑
t=1

ata
⊤
t

)
e⊤i

)

= E
v

(
d∑
i

α2
i e

⊤
i

(
T∑
t=1

ata
⊤
t

)
e⊤i

)

=
d∑
i

1

d
∥ei∥22λi (12)

≤ ∥ei∥22
T

d
+

d−1∑
i

1

d
∥ei∥22λi

≤ ∥ei∥22
T

d
+ max

i∈[d−1]

(
1

d
λi∥ei∥22

)
≤ T

d
max
i∈[d]

(
∥ei∥22

)
(13)

where Equation (13) comes from Banerjee et al. (2022) saying λi ≤ O
(
T
d

)
for i ≤ d − 1 and

λd ≤ O (T ). We will call the quantity from Equation (13) as Λ = T
d max
i∈[d−1]

(
∥ei∥22

)
. We finally have

sup
E∈FT

|P(E)− P′(E)| ≤ ϵ2Λ

Σ2

Therefore, we arrive at the final

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≥ 1

2
∥ϵv∥

(
1− ϵ2Λ

Σ2

)
≥ ϵ∥v∥

2
− ϵ3∥v∥Λ

2Σ2

To maximize the lower bound, we set ϵ = Σ√
2Λ

to get ,

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ Σ∥v∥

3
√
3Λ

.
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Substituting in Λ, we get

E
v

(
max{ E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ Σ∥v∥

3
√
3Λ

≤ Σ∥v∥
√
d

3
√
3T max

i∈[d−1]
(∥ei∥2)

≤ Σ
√
d

3
√
3T max

i∈[d−1]
(∥ei∥2)

Therefore, we get our final claim

E
v

(
max{E1

(∥∥∥θ̂ − θ∗2

∥∥∥
2

)
,E2

(∥∥∥θ̂ − θ∗1

∥∥∥
2

)
}
)
≤ O

(√
dΣ2

T

)
.

Therefore, in expectation of v, we have the desired quantity.

Appendix F. Proof of Lemma 4.4

Lemma 4.4 Let G = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL for notational ease. Given any value ω ∈ [1,∞),
we can construct a bandit instance that satisfies Assumption 4.1. Specifically, Assumption 4.1 is
satisfied by two-dimensional bandit instances that are rotationally isomorphic to the bandit instance
where

1. θ∗ forms an angle κ with the vector (1, 0) where

κ ∈
[
max

(
− cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0) + β − π

)
,

min

(
cos−1

(
3(1− ι)ϵL
∥θ∗∥2

)
, cos−1 (0)− β

)]
.

2. ∀(x, y) ∈ A s.t. (x, y) ̸= (1, 0), cos(κ+ tan-1(y, x))∥θ∗∥2
√

x2 + y2 < cos(κ)∥θ∗∥2.

3. The two points
(

G cos(β)
cos(κ+β)∥θ∗∥2 ,

G sin(β)
cos(k+β)∥θ∗∥2

)
,
(

G cos(−β)
cos(κ−β)∥θ∗∥2 ,

G sin(−β)
cos(k−β)∥θ∗∥2

)
∈ A.

We have defined two instancesM1 = (θ∗1,A1) andM2 = (θ∗2,A2) as rotationally isomorphic if
there exists a rotation operationR such thatR(θ∗1) = θ∗2 andR is a bijective function from A1 to
A2.

Proof For visualization purposes, we will demonstrate the existence of an action set A ⊂ R2, which
satisfies our assumptions for a prechosen value ω. We provide an example visualization in Figure 4.
Without loss of generality, set the optimal arm a∗ to be the vector (1, 0). Let

κ ∈
[
max

(
− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
, arccos (0) + β − π

)
,

min

(
arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
, arccos (0)− β

)]
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be the angle formed between θ∗ and a∗ where a∗ is the reference point and θ∗ ∈ Rd. In this setting,
µ∗ = cos(κ)∥θ∗∥2. We remind the reader that we set β = (3(1− ι)ϵL)

1
ω .

The claim is that the following conditions are sufficient for an action set to satisfy Assumption 4.1
for a given ω.

1. ∀(x, y) ∈ A s.t. (x, y) ̸= a∗, cos(κ+ atan2(y, x))∥θ∗∥2
√

x2 + y2 < cos(κ)∥θ∗∥2

2. The points
(
(cos(κ)∥θ∗∥2−3(1−ι)ϵL) cos(β)

cos(κ+β)∥θ∗∥2 , (cos(κ)∥θ
∗∥2−3(1−ι)ϵL) sin(β)

cos(k+β)∥θ∗∥2

)
and

(
(cos(κ)∥θ∗∥2−3(1−ι)ϵL) cos(−β)

cos(κ−β)∥θ∗∥2 , (cos(κ)∥θ
∗∥2−3(1−ι)ϵL) sin(−β)∥θ∗∥2

cos(k−β)∥θ∗∥2

)
are both in A.

In the visualization (Figure 4), the orange line denotes the first constraint so that all points to the
left of the orange line satisfy the first constraint. Moreover, the points from the second constraint are
Points 1 and 3 in Figure 4.

We will evaluate the reward of Point 1. Point 1 forms an angle of β with the optimal arm a∗ and,
thus, forms an angle of β + κ with θ∗. Moreover, the ℓ2 norm of Point 1 is∣∣∣∣(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2

∣∣∣∣ .
Given the restriction on κ, we have that (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ+β)∥θ∗∥2 is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0)− β − π ≤ arccos (0)− β the denominator is
positive. Therefore, its reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ+ β) ∥θ∗∥2
∥θ∗∥2 cos(β + κ) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL

We now do this similarly for Point 3. Point 3 forms an angle of −β with the optimal arm a∗ and,
thus, forms an angle of κ− β with θ∗. Moreover, the ℓ2 norm of Point 1 is∣∣∣∣(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2

∣∣∣∣ .
Given the restrictions on κ, the value (cos(κ)∥θ∗∥2−3(1−ι)ϵL)

cos(κ−β) is strictly positive. Since

− arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
≤ κ ≤ arccos

(
3(1− ι)ϵL
∥θ∗∥2

)
,

the numerator is positive. Moreover, since arccos (0) + β − π ≤ arccos (0) + β, the denominator is
positive. Therefore, its reward is Therefore, its reward is

(cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL)

cos (κ− β) ∥θ∗∥2
∥θ∗∥2 cos(κ− β) = cos (κ) ∥θ∗∥2 − 3(1− ι)ϵL

= µ∗ − 3(1− ι)ϵL
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Point 2
Point 3

Example Convex Polytope

Arms with optimal reward

a∗

θ∗
κ

Figure 4: Example Configuration of action set detailed by the proof for Lemma 4.4. The green points
are the three points referenced by the proof, the orange line is the line of vectors with the same optimal
reward as the optimal Point 2, and the blue lines are example continuations of drawing the convex
hull of the action set that satisfy Assumption 3.1. These are done when κ = .2, L = 5, and β = .1.

Moreover, a∗, or Point 2 in Figure 4 has a reward of µ∗ = cos(κ)∥θ∗∥2. The ℓ2 norm of
Point 2 is 1. It forms an angle of κ with θ∗. Therefore, its reward is cos(κ)∥θ∗∥2. Given that all
points in the action set obey constraint 1 except for a∗, by definition, they have a reward less than
cos(κ)∥θ∗∥2, which is the reward of a∗. Therefore, all points in A will be rewarded less than a∗.
Also, Points 1 and 3 satisfy the first constaint as well. Therefore, these conditions are sufficient to
satisfy Assumption 4.1.
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Appendix G. Implementation details for Phased Elimination used in experiments

Algorithm 3: Phased Elimination
Input :δ (probability parameters), L (number of phases),

{ν1, . . . , νL} (error parameters)
Result: a1, . . . , aT

1 ℓ← 0
2 A1 ← A
3 tℓ ← 0
4 while ℓ < L do
5 εℓ ← 2−ℓ

6 πℓ ← G-Optimal design of Aℓ with δ and νℓ
7 Nℓ ← 0
8 for a ∈ Aℓ do
9 Nℓ(a)←

⌈
2dπℓ(a)

ν2ℓ
log
(
kℓ(ℓ+1)

δ

)⌉
10 Play action a for Nℓ(a) rounds
11 Nℓ ← Nℓ +Nℓ(a)

12 end
13 Vℓ ←

∑
a∈Aℓ

πℓ(a)aa
⊤

14 θℓ ← V −1
l

∑tℓ+Nℓ
t=tℓ

atxt
15 Aℓ+1 ← {a ∈ Aℓ s.t. max

b∈Aℓ

(⟨θℓ, b− a⟩) ≤ 2εl}
16 tℓ ← tℓ + Tℓ

17 ℓ← ℓ+ 1

18 end

Algorithm 3 formally describes the implementation of Phased Elimination used in our experi-
ments. The behavior of this implementation only differs from Algorithm 1 in the choice of stopping
criteria; here, we stop after a maximum number of phases, while Algorithm 1 fixes T and allows L
to vary. Line 6 is computed via a convex program.
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